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Phase transitions in nonequilibrium d-dimensional models withq absorbing states
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A nonequilibrium Potts-like model withq absorbing states is studied using Monte Carlo simulations. In two
dimensions andq53 the model exhibits a discontinuous transition. For the three-dimensional case andq
52 the model exhibits a continuous transition withb51 ~mean field!. Simulations are inconclusive, however,
in the two-dimensional case forq52. We suggest that in this case the model is close to or at the crossing point
of lines separating three different types of phase transitions. The proposed phase diagram in the (q,d) plane is
very similar to that of the equilibrium Potts model. In addition, our simulations confirm the field-theory
prediction that in two dimensions a branching-annihilating random walk model without parity conservation
belongs to the directed percolation universality class.
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I. INTRODUCTION

One of the main achievements of statistical physics dur
the past decades is the understanding of the universal p
erties of systems near an equilibrium second-order ph
transition. Universality classes, characterized by a sm
number of parameters, allow us to understand why differ
systems have the same critical properties@1#.

One important model in equilibrium statistical physics
the so-calledq-states Potts model@2#, which can be used to
describe a large class of physical systems. Its rich crit
behavior is to a large extent understood. It is known that
important parameters that determine its critical behavior
its dimensionalityd and the degeneracy of its ground stateq.

The relatively complete understanding of equilibriu
phase transitions has yet no nonequilibrium counterp
However, it is becoming evident that some analogies
tween equilibrium and nonequilibrium systems could
made.

For example, a classification into universality classes
particularly evident for one-dimensional nonequilibriu
models with absorbing states@3#, which exhibit a phase tran
sition between active and absorbing phase in their station
state. A prime example of a universality class is the direc
percolation ~DP! one, which is typical of models with a
single absorbing state@4#. The so-called parity-conservin
~PC! universality class is typical for models with certain co
servation laws or symmetries@5–8#.

However, it is necessary to investigate nonequilibriu
models in higher dimensions to have a complete charac
ization of the possible universal properties.

Analytical approach to high-dimensional problems
based mainly on field-theory methods. Recently, interes
results were obtained along this line by Cardy and Ta¨uber@9#
who clarified the role of parity conservation and also disc
ered some new universality classes. However, this techn
is applicable only to certain particle systems@10# and a large
class of two- and higher-dimensional models with absorb
states cannot be treated within such a method. Accordin
our understanding of higher-dimensional nonequilibriu
models is rather limited. As for continuous phase transitio
1063-651X/2002/65~5!/056114~7!/$20.00 65 0561
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some models with single absorbing states were shown to
into the DP universality class@11#. Results were also re
ported for a two-dimensional model with two absorbin
states@8#. These models are often motivated by problems
surface catalysis@12#. In some models with absorbing state
discontinuous phase transitions are also known to oc
@13,3,14#.

A subclass of models with absorbing states are the
called branching-annihilating random walk~BARW! ones. In
BARW models each particle can react~annihilate, branch,
diffuse, etc.! according to prescribed rules. It turns out th
BARW models ford.1 are much different from the abov
mentioned~surface-catalysis! models. Some of the result
obtained from the field-theory method@9# have been con-
firmed using numerical methods. For example, Szabo´ and
Santos confirmed the existence of logarithmic corrections
two-dimensional parity-conserving BARW models@15#.
However, for parity-nonconserving particle systems Mon
Carlo simulations@6# seem to be in disagreement with field
theory results@9#.

A characterization of the rich critical behavior encou
tered in models with absorbing states is clearly an import
issue. However, lacking a sound theoretical basis, it is by
means obvious as to which parameters are relevant for su
classification. On general grounds one expects that the
mensionalityd of the system is a relevant parameter. Mor
over, based on the information coming from the on
dimensional case and from equilibrium one expects that
number of absorbing statesq is another relevant paramete
Note however that, in some cases, details of the dynam
might also change the critical properties, even without affe
ing the symmetry of absorbing states@16#. Nevertheless, we
can expect that these cases are accidental rather than ge
~as it is the case in equilibrium phase transitions when
marginal scaling field is present@17#!. Keeping in mind the
above objections, and in the absence of a better choice
considerq as a classification parameter@18#.

In the present paper we study a recently introduced n
equilibrium Potts model withq absorbing states. Our numer
cal results ford>2 can be summarized as follows.
©2002 The American Physical Society14-1
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~i! For d52 and q53 the model has a discontinuou
transition.

~ii ! For d53 andq52 the model exhibits a continuou
transition with an order parameter critical exponentb51
~mean field!.

~iii ! Simulations are inconclusive, however, in thed52
andq52 case, and we suggest that in this case the mod
close to or at the crossing point of lines separating th
different types of phase transitions.

Our results together with the already accumulated kno
edge, prompted us to partition the (q,d) plane into three
regions of different phase transitions: mean-field, non-me
field, and discontinuous transitions. Somewhat surprisin
the topology of such a partition is the same as for the eq
librium Potts model. Although nonequilibrium systems, a
in particular models with absorbing states, are usually
garded as very much different from equilibrium systems
work shows, however, that despite some differences there
also some qualitative similarities.

In addition, we performed simulations of ad52 BARW
model without parity conservation. Our results confirm t
field-theory predictions according to which the critical b
havior belongs to the directed percolation universality cla

II. NONEQUILIBRIUM POTTS MODEL

Before presenting our model let us recall basic proper
of the equilibrium Potts model. First we assign with a latti
site i a q-state variables i50,1, . . . ,q21. Next, we define
the energy of this model through the Hamiltonian

H52(
( i , j )

ds is j
, ~1!

where summation is over pairs (i , j ) which are usually near
est neighbors, andd is the Kronecker delta function. Thi
equilibrium statistical mechanics model was studied us
many different analytical and numerical methods and i
rich source of information about phase transitions and c
cal phenomena@2#.

To study the equilibrium Potts model using Monte Ca
simulations one constructs a stochastic Markov process
suitably chosen transition rates. One of the possible cho
corresponds to the so-called Metropolis algorithm. In t
algorithm one looks at the energy differenceDE between the
final and initial configuration and accepts the move w
probability min$1,e2DE/T%, whereT is temperature.

A nonequilibrium Potts model havingq adsorbing states
can be obtained by making the following transformation
the Metropolis dynamics@16#: when all neighbors of a given
site are in the same state as this site, then this site ca
change its state~at least until one of its neighbors i
changed!. Let us notice that any ofq ground states of the
equilibrium Potts model~1! is an absorbing state of our non
equilibrium Potts model. The one-dimensional version of t
nonequilibrium Potts model has already been examined@16#.
In addition to recovering the expected critical behavior
q52 and 3, it was found that certain additional modific
05611
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tions of its dynamics might affect the critical behavior. W
shall not be concerned with such a variant in the pres
paper.

Since the dynamics of our models is obtained from
modification of the Metropolis algorithm of an equilibrium
system transition probabilities are parametrized by a te
peraturelike quantityT. Strictly speaking, for our model the
ordinary temperature cannot be defined. Nevertheless,
will refer to this quantity as temperature.

Of course in the realm of nonequilibrium systems the
are also other models than those with absorbing states.
of the important questions is whether under certain con
tions nonequilibrium systems might be mapped, at leas
the coarse-grained level, into equilibrium ones. Some asp
of this problem were studied by Grinsteinet al. @19#. In a
class of models studied by them it is important that all tra
sition probabilities are strictly greater than zero. In mod
with absorbing states this requirement is clearly violated.

III. MONTE CARLO SIMULATIONS AND RESULTS

In order to study the properties of our model we ma
extensive Monte Carlo simulations. A natural characteris
of models with absorbing states is the steady-state densi
active sitesr. A given sitei is active when at least one of it
neighbors is in a state different thani. Otherwise the sitei is
called nonactive. Upon approaching a critical pointr devel-
ops a power-law singularity characterized by the exponenb.
At the first-order transitionr has a jump. In addition, we als
looked at its time dependencer(t). In the active phaser(t)
converges to the positive value, while at criticalityr(t) usu-
ally has a power-law decayr;t2d. In the absorbing phaser
very often decays faster than the power law, however,
some cases~also those studied in the present paper! a power-
law behavior is seen, but with a different exponent than
the critical decay.

Moreover, we used the so-called dynamic Monte Ca
method where one sets the system in the absorbing state
activity only locally initiated and monitor some stochas
properties of runs@20#. One of the most frequently use
characteristics is the survival probabilityP(t) that activity
survives at least until timet and the average number of activ
sitesN(t) @to calculateN(t) we average over all runs#. At
criticality P(t) and N(t) are expected to have power-la
decay:P(t);t2d8 and N(t);th. ~For some modelsd5d8,
but exceptions from this relation are also known@3#!. Our
simulations were made for various system sizes and we
sured that the system was large enough so that below
sented results are size independent.

A. dÄ2, qÄ3

Simulations for d52 models were performed on th
square lattice. The temperature dependence of the densi
active sitesr is shown in Fig. 1. ForT,1.237 it is virtually
impossible to reach an active steady-state value ofr, which
suggests that the model undergoes a discontinuous p
transition. Such a scenario is confirmed by the data in F
2–4. In Fig. 2 one can see that upon approaching the tra
4-2
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PHASE TRANSITIONS IN NONEQUILIBRIUMd- . . . PHYSICAL REVIEW E 65 056114
tion point r(t) develops a longer and longer plateau. At t
transition point, which we locate aroundT51.237, the den-
sity r(t) has basically an infinitely long plateau. Such a b
havior is a clear indication of the discontinuous nature of
transition.

Let us notice that below the transition temperaturer(t)
decays ast21/2. A simple scaling argument can be used
show that such a behavior is related to the average dom
size growthl;t1/2. Indeed, let us consider thed52 system
of the linear sizeL. It contains (L/ l )2 subdomains of the
linear sizel and thus the total perimeter of these subdoma
scales asL2/ l . Since active sites are located mainly at t
domain walls their density scales asL2/ lL 25 l 21. Assuming
now thatl increases ast1/2 we obtain thatr;t21/2. The char-
acteristic length that increases ast1/2 is typical for coarsening
in the broken-symmetry phase of the original Potts mo
@21,22#. It also appears in the evolution of one-dimension

FIG. 1. The density of particlesr as a function of temperatureT
for the d52 nonequilibrium Potts model. Close to the transitio
we used the lattice of the linear sizeL5600.

FIG. 2. The time dependence of the densityr(t) for the d52
model and~from top! T51.3, 1.25, 1.237, 1.2365, 1.236, 1.23
1.23, 1.2, and 1.1 (L5500). Each line is an average of 100 ind
pendent runs, which starts from random initial configurations. T
dotted straight line has a slope corresponding tod50.5.
05611
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nonequilibrium systems that belong to the parity-conserv
universality class.

Results of the dynamic Monte Carlo also support the d
continuous nature of the transition. Indeed, both forP(t)
~Fig. 3! andN(t) ~Fig. 4! the data are systematically bendin
and no clear power-law behavior is observed.

Thus, as a summary, for thed52, q53 case our mode
undergoes a discontinuous phase transition.

B. dÄ2, qÄ2

In the q52 case the density of active sites is a simi
function of temperature as in theq53 case~Fig. 1!. Let us
notice however, that now the jump inr is almost twice
smaller than previously. We should also be aware of the
that an observed jump might be a finite-size effect.~Large

e

FIG. 3. The time dependence of the survival probabilityP(t) for
the d52 model and~from top! T51.25, 1.245, 1.242, 1.241, 1.24
1.239, 1.238, 1.237, 1.2365, 1.236, and 1.23 (L5500). Lines for
T51.2365, 1.237, and 1.238 are obtained averaging over 108 inde-
pendent runs.

FIG. 4. The time dependence of the number of active sitesN(t)
for the d52, q53 model and~from top! T51.25, 1.245, 1.242,
1.241, 1.24, 1.239, 1.238, 1.237, 1.2365, 1.236, and 1.23L
5500). Lines forT51.2365, 1.237, and 1.238 are obtained av
aging over 108 independent runs.
4-3
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ADAM LIPOWSKI AND MICHEL DROZ PHYSICAL REVIEW E 65 056114
fluctuations might drive the system into an absorbing s
even though temperature is above the critical temperatu!
As further results show, it is rather difficult to clarify th
nature of the transition in this case. First, let us notice t
time dependence ofr(t) does not develop a clear plateau
in the q53 case.@We estimate the critical point in this cas
asTc51.7585(3).# Neither is there a pronounced power-la
behavior seen in Fig. 5. Ifr(t) does decay ast2d8 at criti-
cality thend8 is very small@d850.07(2)#, which suggests
that the true exponentd8 might be equal to zero. Sometime
to improve the estimation ofd one can use the so-called loc
slopes method@3#. In this methodd is calculated from the
equation

d~ t !5

log10F r~ t !

r~ t/m!G
log10~m!

, ~2!

wherem is a certain constant. Application of this method
our data andm55 is shown in Fig. 6. At criticality the data
converge~with some scattering! to the value 0.06 but such
small value means that the possibilityd50 still cannot be
excluded.

In our opinion, from the steady-state and time-depend
measurements ofr the most likely possibility is that the
transition is of first order and the plateau will develop~in
Fig. 5! but only at a larger time scale.

However, the dynamic Monte Carlo results raise so
doubts on such an interpretation. Indeed, in Fig. 7 we can
that P(t) has a clear power-law decay for at least three
cades in time with the exponentd850.90(2). In addition,
N(t) seems to remain constant at the transition point, wh
suggest thath50 ~see Fig. 8!. To support our dynamic
Monte Carlo results let us notice that Hinrichsen repor
basically the same values for dynamical exponents for
other two-dimensional model withq52 @8#.

FIG. 5. The time dependence of the densityr(t) for the d52
model and~from top! T51.77, 1.76, 1.7585, 1.758, 1.757, 1.7
1.74, and 1.71 (L5500). Each line is an average of 100 indepe
dent runs, which starts from random initial configurations. The d
ted straight line has a slope corresponding tod50.5.
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The factd8 is close to unity andh50 prompted Hinrich-
sen to suggest that the model exhibits a mean field beha
In such a case, however, one should haved51, which is
clearly in contradiction with the behavior ofr(t), which we
observe. A power-law behavior ofP(t) and N(t) is typical
for continuous transitions, which seems to be in conflict w
the behavior ofr. However, the possibility that we have
discontinuous transition accompanied by some dynam
power-law characteristics, although exotic at first sight, c
not be ruled out. We will return to this problem in the fo
lowing section.

Let us also notice~Fig. 5! that, similarly to theq53 case,
for T,Tc the densityr(t) seems to decay in time ast21/2.

C. dÄ3, qÄ2

As a last case in this section, we consider our model
the simple cubic lattice and forq52. Of course, simulations

-
t-

FIG. 6. The exponentd(t) as a function of 1/t for the d5q
52 model and~from top! T51.77, 1.7585, 1.757, 1.75, 1.74, an
1.71 (L5500). Each line is an average of about 100 independ
runs.

FIG. 7. The time dependence of the survival probabilityP(t) for
thed52 model and~from top! T51.77, 1.76, 1.759, 1.7585, 1.758
1.757, 1.755, 1.74, and 1.73 (L5500). Each line is an average o
about 106 independent runs.
4-4
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PHASE TRANSITIONS IN NONEQUILIBRIUMd- . . . PHYSICAL REVIEW E 65 056114
for three-dimensional systems are very demanding. Th
fore we were not able to perform detailed time-depend
simulations nor the dynamic Monte Carlo. However, t
steady-state densityr as measured forL540 and 60 is ba-
sically size independent~Fig. 9!. Nearly linear behavior ofr
in the vicinity of the transition suggests that in this caseb
51, which indicate a mean-field nature of the transition.

D. „q,d… phase diagram

In this section we sketch the overall behavior of o
model in the (q,d) plane. Our proposal~Fig. 10! is based on
the already accumulated knowledge, above presented re
and a minimalistic assumption that the resulting phase
gram should not be too complicated. Essentially, we sug
that the (q,d) plane can be divided into three regions
different types of phase transitions:~i! non-mean-field,~ii !
mean-field, and~iii ! first-order transitions.

FIG. 8. The time dependence of the number of active sitesN(t)
for the d52, q52 model and~from top! T51.77, 1.76, 1.759,
1.7585, 1.758, 1.757, 1.755, 1.74, and 1.73 (L5500). Each line is
an average of about 106 independent runs.

FIG. 9. The density of particlesr as a function of temperatureT
for the three-dimensionalq52 nonequilibrium Potts model with
L560 (h) and 40~1!.
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Some comments are in order. As it is defined only throu
dynamical rules, our model is trivial forq51. However, the
q51 case corresponds to models with a single absorb
state~directed percolation, contact process!. It is known that
the critical dimensiondc in this case equals 4 and ford
smaller~larger! thandc we have a continuous non-mean-fie
~mean-field! transition. Firmly established are also resu
along thed51 line. It is known thatq52 case correspond
typically to the PC universality class. Forq>3 one expects
@8,23# that the model typically belongs to the same univ
sality class as aN-BARW model studied by Cardy and
Täuber @9#, although, under more restrictive dynamics t
PC criticality might also appear@16#. In any case, the critica
behavior is of non-mean-field type. Taking into account t
mean-field behavior obtained in the cased53, q52, we
assume that this case falls into the same region as DP a
critical dimension. On the other hand, the discontinuous tr
sition in thed52, q53 case implies the existence of th
third region. Actually we performed some simulations al
for d52, q54 case. Basically the behavior is similar
the q53 case except that the jump is larger and the fir
order character of the transition is even more transparent.
expect that such a behavior persists for allq.3. Provided
that for d.2 there are no qualitative changes, the diagr
must have a structure as shown in Fig. 10.

It is thus clear that our most difficult cased5q52 is
located somewhere close to the point where all three reg
meet. We have no strong arguments to locate this point
actly at the crossing point, but such a location would c
tainly explain unusual behavior as seen in our Monte Ca
simulations. We do not exclude, however, the possibility t
d5q52 case is off the crossing point but somewhere clo
to it, which would still explain the numerical difficulties in
this case.

The resulting diagram looks very similar to the diagra
of the equilibrium Potts model@2#. In the equilibrium model
the non-mean-field part is basically shifted by 2 upwa
~critical dimensions for ordinary percolation and the Isi
model are 6 and 4, respectively!. However, the diagram for

FIG. 10. The location of various types of phase transitions
d-dimensional models withq absorbing states. Models for whic
numerical results are reported in this paper are denoted as sta
4-5
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ADAM LIPOWSKI AND MICHEL DROZ PHYSICAL REVIEW E 65 056114
the equilibrium Potts model is much more meaningful th
in our case. Indeed, in the Fortuin-Kasteleyn representat
the Potts model is well defined for any, even nonintegeq,
which justifies continuous lines on its phase diagram. In
case, we do not have a representation of our model w
continuousq. The key property that would be required fo
such a representation is the existence of an analog of
partition function. Such a quantity exists for nonequilibriu
systems only in very special cases@24#. Provided that a cer-
tain partition function exists for our model~no matter how
complicated!, and that using this function one can find
corresponding Fortuin-Kasteleyn representation~no matter
how complicated!, continuous lines in our diagram would b
meaningful.

Of course, the presented diagram does not encompas
models with absorbing states. It is well known that, for e
ample, there ared52, q51 models with first-order tran
sitions @3#. But as we already mentioned, similar situatio

FIG. 11. The density of particlesr as a function of the diffusion
rate p for the two-dimensional BARW model withL51000 (h)
and 2000~1!.

FIG. 12. The time dependence of density of particlesr(t) for
the two-dimensional BARW model. Simulations were made
~from top! p50.8, 0.81, 0.82, 0.822, 0.823, 0.8237, 0.824, a
0.825. The dotted line has a slope corresponding to the DP v
d50.451.
05611
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occurs for equilibrium systems where certain facto
~anisotropies, additional interactions, etc.! might change
more generic behavior. The presented diagram is valid o
for the presented Potts model and its applicability to ot
systems requires additional examination.

IV. PARITY-NONCONSERVING BARW MODEL
IN TWO DIMENSIONS

In the present section we examine the two-dimensio
BARW model without parity conservation. In this model pa
ticles are located on sites of a square lattice. In addition
diffusion, which takes place at the ratep, particles can
branch, at the rate 12p, according to the following reaction

X→2X, ~3!

where the offspring particle is placed on the randomly ch
sen nearest neighbor of a parent particle. Moreover, two
ticles that happen to be placed at the same site annih
instantaneously

2X→0. ~4!

This model was already examined by Takayasu and Tre
kov @6#. They suggested that the model undergoes a cont
ous transition aroundp50.85 and the density of particle
decays linearly at the transition point (b51). This result
contradicts more recent field-theory approaches that sugg
that in this case the model should belong to the DP univ
sality class@9#.

Since such a disagreement requires an explanation,
performed Monte Carlo simulations of this model. Our sy
tem size was much larger than in Takayasu and Tretya
simulations and we approached much closer to the crit
point. One can see~Fig. 11! that although aroundp50.8
~which was the largest value ofp simulated by Takayasu an
Tretyakov! the density seems to decay linearly, it has a p
nounced bending close to the transition point. To obtain m

r
d
ue

FIG. 13. The density of particlesr(t) as a function ofpc2p for
the two-dimensional BARW model (pc50.8237). Only results for
L52000 runs are shown here. The linear fit~dotted line! obtained
using the least-square method has a slope correspondingb
50.6.
4-6
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PHASE TRANSITIONS IN NONEQUILIBRIUMd- . . . PHYSICAL REVIEW E 65 056114
accurate estimation of the critical point we examined
time dependence ofr(t) ~see Fig. 12!. From these analyse
we obtain the following estimation of the critical pointpc
50.8237(5). One canalso see that at criticalityr(t) has a
power-law decay with the exponent close to the DP va
d50.451.

Having the critical point we can estimate exponentb and
the corresponding data are shown in Fig. 13. The le
square fit givesb50.60(3), which is certainly compatible
with the DP value 0.584~4!.

To summarize this section, our results confirm the fie
theory prediction that BARW models without parity conse
vation belong to the DP universality class.

V. CONCLUSIONS

In the present paper we examinedd-dimensional nonequi-
librium models withq absorbing states. As our main resu
cs
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we obtained the diagram shown in Fig. 10. Interestingly, t
diagram bears some similarity to the diagram of equilibriu
Potts model. In addition, we clarified the nature of the ph
transition in thed52 BARW model without parity conser
vation. Together with the work of Szabo´ and Santos@15# for
the parity-conserving case, it confirms predictions of the fi
theory ford52 BARW models by Cardy and Ta¨uber @9#.

Although it requires considerable numerical efforts,
would be desirable to clarify the behavior of thed5q52
model. Our results are inconclusive in this case, but a po
bility that an interesting critical behavior could be foun
should motivate further study.
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