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Phase transitions in nonequilibrium d-dimensional models withq absorbing states
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A nonequilibrium Potts-like model wity absorbing states is studied using Monte Carlo simulations. In two
dimensions andj=3 the model exhibits a discontinuous transition. For the three-dimensional casg and
=2 the model exhibits a continuous transition with-1 (mean field. Simulations are inconclusive, however,
in the two-dimensional case for=2. We suggest that in this case the model is close to or at the crossing point
of lines separating three different types of phase transitions. The proposed phase diagram,id)tp&age is
very similar to that of the equilibrium Potts model. In addition, our simulations confirm the field-theory
prediction that in two dimensions a branching-annihilating random walk model without parity conservation
belongs to the directed percolation universality class.
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[. INTRODUCTION some models with single absorbing states were shown to fall
into the DP universality clasgll]. Results were also re-
One of the main achievements of statistical physics duringported for a two-dimensional model with two absorbing
the past decades is the understanding of the universal proptateq 8]. These models are often motivated by problems of
erties of systems near an equilibrium second-order phassurface catalysifl2]. In some models with absorbing states
transition. Universality classes, characterized by a smaldliscontinuous phase transitions are also known to occur
number of parameters, allow us to understand why differenft13,3,14.
systems have the same critical properfies A subclass of models with absorbing states are the so-
One important model in equilibrium statistical physics is called branching-annihilating random wadRARW) ones. In
the so-calledy-states Potts modgR], which can be used to  BARW models each particle can rea@nnihilate, branch,
describe a large class of physical systems. Its rich criticayjiffuse, etc) according to prescribed rules. It turns out that
behavior is to a large extent understood. It is known that thgsARwW models ford>1 are much different from the above

important parameters that determine its critical behavior arghentioned (surface-catalysjsmodels. Some of the results
its dimensionalityd and the degeneracy of its ground state  jpiainad from the field-theory methd@] have been con-

The relatively complete understanding of equilibrium firmed using numerical methods. For example, $zahd

phase transitions has yet no nonequilibrium counterpartSantOS confirmed the existence of logarithmic corrections in

However, it is becoming evident that some analogies befwo-dimensional parity-conserving BARW modeld5].

tween equilibrium and nonequilibrium systems could be . . .
However, for parity-nonconserving particle systems Monte

made. . . L2 —
For example, a classification into universality classes isCarlo simulationg6] seem to be in disagreement with field-

particularly evident for one-dimensional nonequilibrium €Ty resultg9]. _ - _
models with absorbing stat€3], which exhibit a phase tran- A c.haracterlzat}on of thg rich cr|t|c.al behavior encoun-
sition between active and absorbing phase in their stationar{gr€d in models with absorbing states is clearly an important
state. A prime example of a universality class is the directedssue. However, lacking a sound theoretical basis, it is by no
percolation (DP) one, which is typical of models with a means obvious as to which parameters are relevant for such a
single absorbing statp4]. The so-called parity-conserving classification. On general grounds one expects that the di-
(PO universality class is typical for models with certain con- mensionalityd of the system is a relevant parameter. More-
servation laws or symmetri¢§—8|. over, based on the information coming from the one-
However, it is necessary to investigate nonequilibriumdimensional case and from equilibrium one expects that the
models in higher dimensions to have a complete characterumber of absorbing statesis another relevant parameter.
ization of the possible universal properties. Note however that, in some cases, details of the dynamics
Analytical approach to high-dimensional problems ismight also change the critical properties, even without affect-
based mainly on field-theory methods. Recently, interestingng the symmetry of absorbing statel6|. Nevertheless, we
results were obtained along this line by Cardy andb&a[9]  can expect that these cases are accidental rather than generic
who clarified the role of parity conservation and also discov{as it is the case in equilibrium phase transitions when a
ered some new universality classes. However, this technigumarginal scaling field is presefit7]). Keeping in mind the
is applicable only to certain particle systefi§] and a large  above objections, and in the absence of a better choice, we
class of two- and higher-dimensional models with absorbingonsiderq as a classification parametdr8].
states cannot be treated within such a method. Accordingly, In the present paper we study a recently introduced non-
our understanding of higher-dimensional nonequilibriumequilibrium Potts model witlg absorbing states. Our numeri-
models is rather limited. As for continuous phase transitiongal results ford=2 can be summarized as follows.
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(i) For d=2 and g=3 the model has a discontinuous tions of its dynamics might affect the critical behavior. We

transition. shall not be concerned with such a variant in the present
(i) Ford=3 andqg=2 the model exhibits a continuous paper.

transition with an order parameter critical exponght 1 Since the dynamics of our models is obtained from a

(mean field. modification of the Metropolis algorithm of an equilibrium

(i) Simulations are inconclusive, however, in tde 2 system transition probabilities are parametrized by a tem-
andq=2 case, and we suggest that in this case the model igeraturelike quantityf. Strictly speaking, for our model the
close to or at the crossing point of lines separating thre@rdinary temperature cannot be defined. Nevertheless, we
different types of phase transitions. will refer to this quantity as temperature.

Our results together with the already accumulated knowl- Of course in the realm of nonequilibrium systems there
edge, prompted us to partition the,¢) plane into three are also other models than those with absorbing states. One
regions of different phase transitions: mean-field, non-meanef the important questions is whether under certain condi-
field, and discontinuous transitions. Somewhat surprisinglylions nonequilibrium systems might be mapped, at least at
the topology of such a partition is the same as for the equithe coarse-grained level, into equilibrium ones. Some aspects
librium Potts model. Although nonequilibrium systems, andof this problem were studied by Grinsteat al. [19]. In a
in particular models with absorbing states, are usually reclass of models studied by them it is important that all tran-
garded as very much different from equilibrium systems oussition probabilities are strictly greater than zero. In models
work shows, however, that despite some differences there amith absorbing states this requirement is clearly violated.
also some qualitative similarities.

In addition, we performed simulations ofdea=2 BARW
model without parity conservation. Our results confirm the
field-theory predictions according to which the critical be- In order to study the properties of our model we made
havior belongs to the directed percolation universality classextensive Monte Carlo simulations. A natural characteristic
of models with absorbing states is the steady-state density of
active sites. A given sitei is active when at least one of its
neighbors is in a state different thanOtherwise the sitéis

Before presenting our model let us recall basic propertie§alled nonactive. Upon approaching a critical pgindevel-
of the equilibrium Potts model. First we assign with a latticeOps a power-law singularity characterized by the expogent
sitei a g-state variabler;=0,1, ... g—1. Next, we define Atthe first-order transitiop has a jump. In addition, we also
the energy of this model through the Hamiltonian looked at its time dependenggt). In the active phasg(t)

converges to the positive value, while at criticalitft) usu-
ally has a power-law decgy~t~°. In the absorbing phage
H:—E So.0» (D) very often decays faster than the power law, however, in
) some case&lso those studied in the present pagepower-
law behavior is seen, but with a different exponent than for
where summation is over pairs,{) which are usually near- the critical decay.
est neighbors, and is the Kronecker delta function. This Moreover, we used the so-called dynamic Monte Carlo
equilibrium statistical mechanics model was studied usingnethod where one sets the system in the absorbing state with
many different analytical and numerical methods and is aactivity only locally initiated and monitor some stochastic
rich source of information about phase transitions and critiproperties of rung20]. One of the most frequently used
cal phenomeng2]. characteristics is the survival probabiliiy(t) that activity

To study the equilibrium Potts model using Monte Carlosurvives at least until timeand the average number of active
simulations one constructs a stochastic Markov process withitesN(t) [to calculateN(t) we average over all ruihsAt
suitably chosen transition rates. One of the possible choicewiticality P(t) and N(t) are expected to have power-law
corresponds to the so-called Metropolis algorithm. In thisgecay:P(t)~t~%" andN(t)~t”. (For some model$= &',
algorithm one looks at the energy differens& between the  put exceptions from this relation are also knoyaj). Our
final and initial configuration and accepts the move withsimulations were made for various system sizes and we en-

probability mi{1,e” %"}, whereT is temperature. sured that the system was large enough so that below pre-
A nonequilibrium Potts model having adsorbing states sented results are size independent.

can be obtained by making the following transformation in
the Metropolis dynamicgl6]: when all neighbors of a given
site are in the same state as this site, then this site cannot
change its statgat least until one of its neighbors is  Simulations ford=2 models were performed on the
changed Let us notice that any off ground states of the square lattice. The temperature dependence of the density of
equilibrium Potts mode(l) is an absorbing state of our non- active sitesp is shown in Fig. 1. FoT <1.237 it is virtually
equilibrium Potts model. The one-dimensional version of thismpossible to reach an active steady-state valug, afhich
nonequilibrium Potts model has already been examjdiél  suggests that the model undergoes a discontinuous phase
In addition to recovering the expected critical behavior fortransition. Such a scenario is confirmed by the data in Figs.
g=2 and 3, it was found that certain additional modifica-2—4. In Fig. 2 one can see that upon approaching the transi-

IIl. MONTE CARLO SIMULATIONS AND RESULTS

II. NONEQUILIBRIUM POTTS MODEL

A.d=2, =3
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FIG. 1. The density of particles as a function of temperatufie FIG. 3. The time dependence of the survival probabHity) for
for the d=2 nonequilibrium Potts model. Close to the transitions the d=2 model andfrom top T=1.25, 1.245, 1.242, 1.241, 1.24,
we used the lattice of the linear sike=600. 1.239, 1.238, 1.237, 1.2365, 1.236, and 1.23-600). Lines for

T=1.2365, 1.237, and 1.238 are obtained averaging ovembe-

tion point p(t) develops a longer and longer plateau. At thePendent runs.
transition point, which we locate arourid=1.237, the den- o ) ]
sity p(t) has basically an infinitely long plateau. Such a be_nopeqwhpnum systems that belong to the parity-conserving
havior is a clear indication of the discontinuous nature of theJniversality class. , ,
transition. Results of the dynamic Monte Carlo also support the dis-

Let us notice that below the transition temperatp(e) co.ntmuous nature. of the transition. Indeed,.both IRilt).
decays ag~ Y2 A simple scaling argument can be used to (Fig. 3 andN(t) (Fig. 4 the dat_a are systematically bending
show that such a behavior is related to the average domaf'd no clear power-law behavior is observed.
size growthl ~t¥2 Indeed, let us consider thie=2 system Thus, as a summary, for thie=2, q=3 case our model
of the linear sizelL. It contains (/1) subdomains of the Undergoes a discontinuous phase transition.
linear sizel and thus the total perimeter of these subdomains
scales ad.?/l. Since active sites are located mainly at the B.d=2, g=2
domain walls their density scales B%/IL?=1"1. Assuming
now thatl increases as’*we obtain thap~t~*2 The char-  function of temperature as in tfe=3 case(Fig. 1). Let us
acteristic length that increasesta is typical for coarsening notice however, that now the jump ip is almost twice

in the broken-symmetry phase of the original Potts modekmaller than previously. We should also be aware of the fact
[21,22. It also appears in the evolution of one-dimensionalinat an observed jump might be a finite-size effétarge

In the g=2 case the density of active sites is a similar
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FIG. 2. The time dependence of the dengify) for thed=2 FIG. 4. The time dependence of the number of active $itg$

model and(from top T=1.3, 1.25, 1.237, 1.2365, 1.236, 1.235, for thed=2, q=3 model andfrom top T=1.25, 1.245, 1.242,
1.23, 1.2, and 1.1(=500). Each line is an average of 100 inde- 1.241, 1.24, 1.239, 1.238, 1.237, 1.2365, 1.236, and 1123 (
pendent runs, which starts from random initial configurations. The=500). Lines forT=1.2365, 1.237, and 1.238 are obtained aver-
dotted straight line has a slope corresponding+00.5. aging over 18 independent runs.
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FIG. 6. The exponens(t) as a function of 1/ for the d=q
=2 model andfrom top T=1.77, 1.7585, 1.757, 1.75, 1.74, and
1.71 (L=500). Each line is an average of about 100 independent
uns.

FIG. 5. The time dependence of the dengify) for thed=2
model and(from top T=1.77, 1.76, 1.7585, 1.758, 1.757, 1.75,
1.74, and 1.711(=500). Each line is an average of 100 indepen-
dent runs, which starts from random initial configurations. The dot-r

ted straight line has a slope correspondingte0.5. . . L
g P P ® The facté’ is close to unity andy=0 prompted Hinrich-

. . . . . sen to suggest that the model exhibits a mean field behavior.
fluctuations might drive the system into an absorbing statg

hough is ab h tical n such a case, however, one should ha@el, which is
even thoug temperature' IS above t e prltlca temperatureclearly in contradiction with the behavior pft), which we
As further results show, it is rather difficult to clarify the

o ; ) : observe. A power-law behavior & (t) andN(t) is typical
nature of the transition in this case. First, let us notice tha*or continuous transitions, which seems to be in conflict with
time dependence gf(t) does not develop a clear plateau 3Sthe behavior ofp. However, the possibility that we have a
in the =3 case[We estimate the critical point in this case '

T . . discontinuous transition accompanied by some dynamical
asT.=1.758%3).] Neither is there a pronounced power-law ., ver_aw characteristics, although exotic at first sight, can-

behavior seen in Fig. 5. f(t) does decay as™°" at criti-  not be ruled out. We will return to this problem in the fol-
cality then ¢’ is very small[6'=0.07(2)], which suggests |owing section.

that the true exponer®’ might be equal to zero. Sometimes | et us also noticéFig. 5) that, similarly to theg=3 case,
to improve the estimation af one can use the so-called local for T<T, the densityp(t) seems to decay in time as*?
slopes method3]. In this methods is calculated from the

equation C.d=3, q=2
o p(t) As a last case in this section, we consider our model on
G p(t/m) the simple cubic lattice and fay=2. Of course, simulations
()= ———F"—, 2
log;o(m)

wherem is a certain constant. Application of this method to
our data andn=>5 is shown in Fig. 6. At criticality the data
converge(with some scatteringto the value 0.06 but such a -1.5
small value means that the possibilii=0 still cannot be
excluded.

[P(]

In our opinion, from the steady-state and time-dependentg 23
measurements of the most likely possibility is that the = 3
transition is of first order and the plateau will develGp -35
Fig. 5 but only at a larger time scale. 4

However, the dynamic Monte Carlo results raise some
doubts on such an interpretation. Indeed, in Fig. 7 we can se
that P(t) has a clear power-law decay for at least three de- -5
cades in time with the expone® =0.902). In addition,

N(t) seems to remain constant at the transition point, which
suggest thaty=0 (see Fig. 8 To support our dynamic FIG. 7. The time dependence of the survival probabify) for
Monte Carlo results let us notice that Hinrichsen reportedhed=2 model andfrom top T=1.77, 1.76, 1.759, 1.7585, 1.758,
basically the same values for dynamical exponents for ant.757, 1.755, 1.74, and 1.78 £500). Each line is an average of
other two-dimensional model with=2 [8]. about 16 independent runs.

4.5

0 05 1 15 2 25 3 35 4 45 5
log; ()
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FIG. 8. The time dependence of the number of active itg3
for thed=2, =2 model and(from top T=1.77, 1.76, 1.759,

1.7585, 1.758, 1.757, 1.755, 1.74, and 1.£3-600). Each line is
an average of about $Gndependent runs.
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FIG. 10. The location of various types of phase transitions for
d-dimensional models witly absorbing states. Models for which
numerical results are reported in this paper are denoted as stars.

Some comments are in order. As it is defined only through

for three-dimensional systems are very demanding. Theredynamical rules, our model is trivial fay=1. However, the
fore we were not able to perform detailed time-dependenfi=1 case corresponds to models with a single absorbing
simulations nor the dynamic Monte Carlo. However, theState(directed percolation, contact procgss is known that

steady-state density as measured foc =40 and 60 is ba-
sically size independeriFig. 9). Nearly linear behavior o

in the vicinity of the transition suggests that in this cgse
=1, which indicate a mean-field nature of the transition.

D. (q,d) phase diagram

the critical dimensiond, in this case equals 4 and fat
smaller(largen thand; we have a continuous non-mean-field
(mean-field transition. Firmly established are also results
along thed=1 line. It is known thaty=2 case corresponds
typically to the PC universality class. Fge=3 one expects
[8,23] that the model typically belongs to the same univer-
sality class as a\-BARW model studied by Cardy and

In this section we sketch the overall behavior of ourTauber[9], although, under more restrictive dynamics the

model in the §,d) plane. Our proposdFig. 10 is based on

PC criticality might also appead6]. In any case, the critical

the already accumulated knowledge, above presented resultsshavior is of non-mean-field type. Taking into account the
and a minimalistic assumption that the resulting phase diamean-field behavior obtained in the cade3, q=2, we
gram should not be too complicated. Essentially, we suggestssume that this case falls into the same region as DP above
that the @,d) plane can be divided into three regions of critical dimension. On the other hand, the discontinuous tran-

different types of phase transition8) non-mean-fieldii)
mean-field, andiii) first-order transitions.

0.9 T T T T T T

08 | . .
07 f -
06 | -
05 f -
04 f -
03 f o -
02 f -
01f Lo 1

254 2.55 2.56 2.57 2.58 2.59 2.6
T

0
2.53

FIG. 9. The density of particlegs as a function of temperatuiie
for the three-dimensionaj=2 nonequilibrium Potts model with
L=60 (d) and 40(+).

sition in thed=2, =3 case implies the existence of the
third region. Actually we performed some simulations also
for d=2, q=4 case. Basically the behavior is similar to
the g=3 case except that the jump is larger and the first-
order character of the transition is even more transparent. We
expect that such a behavior persists forai# 3. Provided
that ford>2 there are no qualitative changes, the diagram
must have a structure as shown in Fig. 10.

It is thus clear that our most difficult case=q=2 is
located somewhere close to the point where all three regions
meet. We have no strong arguments to locate this point ex-
actly at the crossing point, but such a location would cer-
tainly explain unusual behavior as seen in our Monte Carlo
simulations. We do not exclude, however, the possibility that
d=qg=2 case is off the crossing point but somewhere close
to it, which would still explain the numerical difficulties in
this case.

The resulting diagram looks very similar to the diagram
of the equilibrium Potts modéR]. In the equilibrium model
the non-mean-field part is basically shifted by 2 upwards
(critical dimensions for ordinary percolation and the Ising
model are 6 and 4, respectivelHowever, the diagram for
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FIG. 11. The density of particlgs as a function of the diffusion FIG. 13. The density of particleg(t) as a function op.— p for
rate p for the two-dimensional BARW model with=1000 () the two-dimensional BARW modelp=0.8237). Only results for
and 2000(+). L=2000 runs are shown here. The linear(fibtted ling obtained

using the least-square method has a slope corresponding to
the equilibrium Potts model is much more meaningful than=0.6.

in our case. Indeed, in the Fortuin-Kasteleyn representation,

the Potts model is well defined for any, even nonintegjer occurs for equilibrium systems where certain factors
which justifies continuous lines on its phase diagram. In oufanisotropies, additional interactions, é¢tanight change
case, we do not have a representation of our model wittmore generic behavior. The presented diagram is valid only
continuousq. The key property that would be required for for the presented Potts model and its applicability to other
such a representation is the existence of an analog of th&ystems requires additional examination.

partition function. Such a quantity exists for nonequilibrium

systems only in very special cagexl]. Provided that a cer- IV. PARITY-NONCONSERVING BARW MODEL

tain partition function exists for our modého matter how IN TWO DIMENSIONS

complicated, and that using this function one can find a ) , , ,
corresponding Fortuin-Kasteleyn representatiop matter In the present section we examine the two-dimensional
how complicate] continuous lines in our diagram would be BARW model without parity conservation. In this model par-
meaningful. ticles are located on sites of a square lattice. In addition to

Of course, the presented diagram does not encompass &iffusion, which takes place at the rag particles can
models with absorbing states. It is well known that, for ex-Pranch, at the rate-p, according to the following reaction:

ample, there arel=2, q=1 models with first-order tran- X—s2X &)
sitions[3]. But as we already mentioned, similar situations '

where the offspring particle is placed on the randomly cho-

03 ' ' ' ' ' sen nearest neighbor of a parent particle. Moreover, two par-
ticles that happen to be placed at the same site annihilate
1r il instantaneously
15+ 1 2X—0. (4)
z Sl | This model was already examined by Takayasu and Tretya-
%% kov [6]. They suggested that the model undergoes a continu-
= 25| | ous transition aroungh=0.85 and the density of particles
- decays linearly at the transition poinB€1). This result
contradicts more recent field-theory approaches that suggests
3 i that in this case the model should belong to the DP univer-
sality clasq9].
-3~50 p Since such a disagreement requires an explanation, we

performed Monte Carlo simulations of this model. Our sys-
tem size was much larger than in Takayasu and Tretyakov
FIG. 12. The time dependence of density of partigi¢s) for ~ Simulations and we approached much closer to the critical
the two-dimensional BARW model. Simulations were made forpoint. One can se¢Fig. 11) that although aroungh=0.8
(from top p=0.8, 0.81, 0.82, 0.822, 0.823, 0.8237, 0.824, and(which was the largest value pfsimulated by Takayasu and
0.825. The dotted line has a slope corresponding to the DP valuéretyakoy the density seems to decay linearly, it has a pro-
5=0.451. nounced bending close to the transition point. To obtain more

log;o(®)
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accurate estimation of the critical point we examined thewe obtained the diagram shown in Fig. 10. Interestingly, this
time dependence qf(t) (see Fig. 12 From these analyses diagram bears some similarity to the diagram of equilibrium
we obtain the following estimation of the critical poipt ~ Potts model. In addition, we clarified the nature of the phase
=0.82375). One camalso see that at criticalitp(t) has a transition in thed=2 BARW model without parity conser-
power-law decay with the exponent close to the DP valuevation. Together with the work of Szatemd Santo$15] for
6=0.451. the parity-conserving case, it confirms predictions of the field
Having the critical point we can estimate expongrand  theory ford=2 BARW models by Cardy and Téer[9].
the corresponding data are shown in Fig. 13. The least- Although it requires considerable numerical efforts, it
square fit gives8=0.6Q(3), which is certainly compatible would be desirable to clarify the behavior of thde=q=2
with the DP value 0.584). model. Our results are inconclusive in this case, but a possi-
To summarize this section, our results confirm the field-bility that an interesting critical behavior could be found
theory prediction that BARW models without parity conser- should motivate further study.
vation belong to the DP universality class.
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